Value of Feature Reduction for Crop Differentiation Using Multi- Temporal Imagery, Machine Learning, and Object-based Image Analysis
نویسندگان
چکیده
This study examined the value of automated and manual feature selection, when applied to machine learning and object-based image analysis (OBIA), for the differentiation of crops in a Mediterranean climate. Five Landsat8 images covering the phenological stages of seven major crops types in the study area (Cape Winelands, South Africa) were acquired and processed. A statistical image fusion technique was used to enhance the spatial resolution of the imagery. The pan-sharpened imagery was used to produce a range of spectral features, textural measures, indices and colour transformations, after which it was segmented using the multi-resolution (MRS) algorithm. The entire set of 205 features (41 per image capture date) was then subjected to different feature selection and reduction methods. The feature selection and reduction methods included manual feature removal (i.e. grouping into semantic themes), filter methods (such as classification and regression trees (CART) and random forest (RF)), and statistical principal components analysis (PCA). The experiments were carried out in two scenarios, namely 1) on all input images in combination; and 2) on each individual image date. The feature subsets were used as input to decision trees (DTs), k-nearest neighbour (k-NN), support vector machine (SVM), and random forest (RF) machine learning classifiers. In order to assess the value of each feature reduction method (comprising feature reduction and selection techniques), overall accuracy, kappa coefficient and McNemar’s test were employed to assess classification accuracy and compare the results. The results show that feature selection was able to improve the overall crop identification accuracy for the DT, k-NN, and RF classifiers, but was unable to do so for SVM. SVM scored the highest overall accuracy and kappa coefficient, even without applying feature reduction or selection. Based on these results it was concluded that, although feature selection can aid the crop differentiation process, it is not a necessity. * Corresponding author
منابع مشابه
Crop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملAutomatic Interpretation of UltraCam Imagery by Combination of Support Vector Machine and Knowledge-based Systems
With the development of digital sensors, an increasing number of high-resolution images are available. Interpretation of these images is not possible manually, which necessitates seeking for practical, fast and automatic solutions to solve the environmental and location-based management problems. The land cover classification using high-resolution imagery is a difficult process because of the c...
متن کاملObject-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images
As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...
متن کاملSupport Vector Machine Classification of Object-based Data for Crop Mapping, Using Multi-temporal Landsat Imagery
Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to d...
متن کاملObject-Based Classification of UltraCamD Imagery for Identification of Tree Species in the Mixed Planted Forest
This study is a contribution to assess the high resolution digital aerial imagery for semi-automatic analysis of tree species identification. To maximize the benefit of such data, the object-based classification was conducted in a mixed forest plantation. Two subsets of an UltraCam D image were geometrically corrected using aero-triangulation method. Some appropriate transformations were perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016